• IP addresses are NOT logged in this forum so there's no point asking. Please note that this forum is full of homophobes, racists, lunatics, schizophrenics & absolute nut jobs with a smattering of geniuses, Chinese chauvinists, Moderate Muslims and last but not least a couple of "know-it-alls" constantly sprouting their dubious wisdom. If you believe that content generated by unsavory characters might cause you offense PLEASE LEAVE NOW! Sammyboy Admin and Staff are not responsible for your hurt feelings should you choose to read any of the content here.

    The OTHER forum is HERE so please stop asking.

Do you know we know almost nothing about thousands of proteins in the human body?

ginfreely

Alfrescian
Loyal
IMG_6639.jpeg
 

ginfreely

Alfrescian
Loyal
To create the unknome, Sean Munroat the MRC Laboratory of Molecular Biology in Cambridge, UK, and his colleagues started with the 20,000 or so genes for proteins that have been identified in humans. They grouped together closely related human genes or proteins on the basis that they probably have similar functions, resulting in around 7500 protein clusters.
 

ginfreely

Alfrescian
Loyal
Next, they added closely related proteins found in commonly studied animals, such as mice or fruit flies, to these clusters, as these probably also have the same function. They then gave each protein cluster a score based on how many entries there were about its members in the main repository of information on the functions of genes, known as the Gene Ontology Resource.
 

ginfreely

Alfrescian
Loyal
A human protein that hasn’t been directly studied still scores highly if an equivalent protein has been well studied in another animal. Proteins also get higher scores for entries that are regarded as more reliable, such as having been published in a journal. The scoring is slightly arbitrary, says Munro, but this is inevitable when trying to work out what we don’t know.

The best-studied proteins have scores of well over 100. For instance, a protein called sonic hedgehog, which is involved in embryonic development, scores 168, while p53, which helps stop cells turning cancerous, scores 126. However, more than 2200 proteins have scores below 2, 1100 score below 1 and more than 800 score 0.
 

ginfreely

Alfrescian
Loyal
In theory, these low-scoring proteins might not have been studied because they don’t do anything important. To get an idea of whether the proteins matter, the team used a technique called RNA interference (RNAi) to reduce the levels of 260 proteins with scores below 1 in fruit flies. In 60 cases, the flies died, showing that these particular proteins have an essential function.

That was a big surprise to the members of the team who study fruit flies, says Munro. “They just assume that every possible important gene has been found, which turns out, of course, not to be true.”
 

ginfreely

Alfrescian
Loyal
The number of unknown proteins is slowly going down, he says, but he hopes the findings will accelerate the pace of discovery. The problem at the moment is that both funding bodies and individual researchers are reluctant to risk studying unknown proteins in case they turn out not to do anything important.

“There may even be biological processes that we don’t know about,” says Munro. “No one is looking for the proteins involved in them because no one knows about them.” That may sound surprising, he says, but the gene-editing technique known as CRISPR is based on bacterial proteins whose function was uncovered only in 2012.
 

ginfreely

Alfrescian
Loyal
The problem at the moment is that both funding bodies and individual researchers are reluctant to risk studying unknown proteins in case they turn out not to do anything important.
So true who will want to go all the way do things for people or proteins that are unimportant and won’t do anything for them in return? Be it police or science researchers all same. Only silly hokkien heroes philanthropists will do that indeed.
 
Top